The Hol Picture

Our Insights on Real-World Evidence and Behavioral Health

Posts about:

NLP

A team of colleagues working on oversized gears

NeuroBlu NLP: A Technical Deep Dive into Developing NLP models for Clinical Insights

The landscape of mental health research is evolving, and tools like Natural Language Processing (NLP) hold immense potential to bridge the gap between clinical trials and real-world evidence. As we strive to enhance our understanding of mental health outcomes and treatment effectiveness, a strategic implementation of NLP tools becomes pivotal.

This blog explores a high-level overview of how we developed NeuroBlu NLP - Holmusk’s NLP models specifically tailored for extracting disease-specific clinical features from unstructured clinical text. These NLP-derived clinical features are then integrated into our structured data and made available in NeuroBlu, Holmusk’s powerful data analytics software for behavioral health. The incorporation of NLP-derived features into structured data provides a more comprehensive, easily accessible estimate of patient phenotypes in the real-world, ultimately benefiting patient care.

Read More

Capitalizing on untapped value: Extracting environmental stressors from clinical notes via natural language processing

Consider an emergency room doctor who is caring for a patient who has been hospitalized after a suicide attempt. When she consults his chart, she can see that he has been diagnosed with depression, but the structured data that is immediately available does not provide much additional context. 

Read More