NeuroBlu NLP: A Technical Deep Dive into Developing NLP models for Clinical Insights
The landscape of mental health research is evolving, and tools like Natural Language Processing (NLP) hold immense potential to bridge the gap between clinical trials and real-world evidence. As we strive to enhance our understanding of mental health outcomes and treatment effectiveness, a strategic implementation of NLP tools becomes pivotal.
This blog explores a high-level overview of how we developed NeuroBlu NLP - Holmusk’s NLP models specifically tailored for extracting disease-specific clinical features from unstructured clinical text. These NLP-derived clinical features are then integrated into our structured data and made available in NeuroBlu, Holmusk’s powerful data analytics software for behavioral health. The incorporation of NLP-derived features into structured data provides a more comprehensive, easily accessible estimate of patient phenotypes in the real-world, ultimately benefiting patient care.